Filter by:
Publication type
- Book (2)
- Article (1)
- Master thesis (1)
Authors
- Ravi Gopal Singh (2)
- Abel Jaime Leal González (1)
- Nele Verhulst (1)
- Paresh Shirsath (1)
- Rausel Ovando (1)
Issue Years
Publishers
- CICESE (1)
Origin repository
- Repositorio Institucional de Publicaciones Multimedia del CIMMYT (3)
- Repositorio Institucional CICESE (1)
Access Level
- oa:openAccess (4)
Language
Subject
- CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA (3)
- ENSEÑANZA CON AYUDA DE ORDENADOR (2)
- AGRICULTURA DE CONSERVACIÓN (1)
- ANIMAL HUSBANDRY (1)
- CIENCIAS TECNOLÓGICAS (1)
Select the topics of your interest and receive the hottest publications in your email
4 results, page 1 of 1
Hacia un manejo sustentable de la quinua en el altiplano sur de Bolivia
Santiago Lopez-Ridaura Ravi Gopal Singh (2022)
Book
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA QUINUA FERTILIDAD DEL SUELO GANADERÍA AGRICULTURA DE CONSERVACIÓN SUELO SIEMBRA PLAGAS QUINOA SOIL FERTILITY ANIMAL HUSBANDRY CONSERVATION AGRICULTURE SOIL SOWING PESTS
Solar Irrigation Pump (SIP) sizing tool: user manual (Beta version)
Santosh Mali Paresh Shirsath (2022)
Book
CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA SOLAR POWERED IRRIGATION SYSTEMS PUMPS IRRIGATION WATER MANUALS
Weed management and tillage effect on rainfed maize production in three agro-ecologies in Mexico
Simon Fonteyne Abel Jaime Leal González Rausel Ovando Ravi Gopal Singh Nele Verhulst (2022)
Maize (Zea mays L.) is grown in a wide range of agro-ecological environments and production systems across Mexico. Weeds are a major constraint on maize grain yield, but knowledge regarding the best weed management methods is lacking. In many production systems, reducing tillage could lessen land degradation and production costs, but changes in tillage might require changes in weed management. This study evaluated weed dynamics and rainfed maize yield under five weed management treatments (pre-emergence herbicide, post-emergence herbicide, pre-emergence + post-emergence herbicide, manual weed control, and no control) and three tillage methods (conventional, minimum and zero tillage) in three agro-ecologically distinct regions of the state of Oaxaca, Mexico, in 2016 and 2017. In the temperate Mixteca region, weeds reduced maize grain yields by as much as 92% and the long-growing season required post-emergence weed control, which gave significantly higher yields. In the hot, humid Papaloapan region, weeds reduced maize yields up to 63% and pre-emergence weed control resulted in significantly higher yields than treatments with post-emergence control only. In the semi-arid Valles Centrales region, weeds reduced maize yields by as much as 65%, but weed management was not always effective in increasing maize yield or net profitability. The most effective weed management treatments tended to be similar for the three tillage systems at each site, although weed pressure and the potential yield reduction by weeds tended to be higher under zero tillage than minimum or conventional tillage. No single best option for weed management was found across sites or tillage systems. More research, in which non-chemical methods should not be overlooked, is thus needed to determine the most effective weed management methods for the diverse maize production systems across Mexico.
Article
Corn Integrated Weed Management Manual Weed Control CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA MAIZE WEED CONTROL MINIMUM TILLAGE ZERO TILLAGE
Reconocimiento continuo de la Lengua de Señas Mexicana
Continuous recognition of Mexican Sign Language
Ricardo Fernando Morfín Chávez (2023)
La Lengua de Señas Mexicana (LSM) es la lengua utilizada por la comunidad Sorda en México, y, a menudo, subestimada y pasada por alto por la comunidad oyente, lo que resulta en la exclusión sistemática de las personas Sordas en diversos aspectos de la vida. Sin embargo, la tecnología puede desempeñar un papel fundamental en acercar a la comunidad Sorda con la comunidad oyente, promoviendo una mayor inclusión y comprensión entre ambas. El objetivo principal de este trabajo es diseñar, implementar y evaluar un sistema de reconocimiento continuo de señas estáticas en LSM mediante, visión por computadora y técnicas de aprendizaje máquina. Se establecieron objetivos específicos, que incluyen la generación de un conjunto de datos de señas estáticas, pertenecientes al alfabeto manual de la LSM, el diseño de un modelo de reconocimiento, y la evaluación del sistema, tanto en la modalidad aislada como en la continua. La metodología involucra dos evaluaciones distintas. La primera se enfoca en el reconocimiento de señas estáticas en el dominio aislado, para ello se capturaron datos de 20 participantes realizando movimientos de la mano en múltiples ángulos. Se evaluaron diversas técnicas de aprendizaje automático, destacando que el enfoque basado en Máquinas de Soporte Vectorial (SVM) obtuvo los mejores resultados (F1-Score promedio del 0.91). La segunda evaluación se concentra en el reconocimiento continuo de señas estáticas, con datos recopilados de seis participantes con diferentes niveles de competencia en LSM, logrando un rendimiento sólido con errores cercanos al 7 %. Además, se evaluó la viabilidad del sistema en aplicaciones de tiempo real, demostrando un excelente desempeño (velocidad promedio de procesamiento de 45 cuadros por segundo). A pesar de los logros alcanzados, es importante reconocer que este proyecto se centró en el reconocimiento continuo de señas estáticas en LSM. Queda pendiente, como un desafío interesante, la exploración del reconocimiento continuo de señas dinámicas en LSM para futuras investigaciones. Se considera esencial explorar enfoques orientados a la escalabilidad y aplicaciones en tiempo real en investigaciones posteriores.
This study focuses on the continuous recognition of static signs in Mexican Sign Language (Lengua de Señas Mexicana (LSM)), the language used by the Deaf community in Mexico. Despite its significance, LSM is often underestimated and overlooked, leading to the systematic exclusion of Deaf individuals in various aspects of life. The primary objective of this work is to design, implement, and evaluate a continuous static sign recognition system in LSM using computer vision and machine learning techniques. Specific goals were established, including the creation of a dataset of static signs belonging to the manual alphabet of LSM, the design of a recognition model, and the evaluation of the system in both isolated and continuous modes. The methodology involves two distinct evaluations. The first one focuses on the recognition of static signs in the isolated domain, for which data from 20 participants performing hand movements at various angles were collected. Various machine learning techniques were evaluated, with the Máquinas de Soporte Vectorial (SVM)-based approach achieving the best results (average F1-Score of 0.91). The second evaluation centers on the continuous recognition of static signs, using data collected from six participants with varying levels of competence in LSM, achieving robust performance with errors close to 7 %. Furthermore, the feasibility of the system in real-time applications was assessed, demonstrating excellent performance (average processing speed of 45 frames per second). Despite the achievements, it is important to recognize that this project focused on continuous recognition of static signs in LSM. It remains an interesting challenge to explore the continuous recognition of dynamic signs in LSM for future research. It is considered essential to explore scalability-oriented approaches and real-time applications in subsequent investigations.
Master thesis
Lengua de Señas Mexicana (LSM), visión por computadora, aprendizaje automático, alfabeto manual de la LSM, reconocimiento automático de señas estáticas, reconocimiento aislado de señas, reconocimiento continuo de señas, aplicacion Mexican Sign Language (LSM), computer vision, machine learning, LSM manual alpahbet, automatic recognition of static signs, isolated sign recognition, continuous sign recognition, real-time aplications INGENIERÍA Y TECNOLOGÍA CIENCIAS TECNOLÓGICAS TECNOLOGÍA DE LOS ORDENADORES ENSEÑANZA CON AYUDA DE ORDENADOR ENSEÑANZA CON AYUDA DE ORDENADOR