Advanced search


Knowledge area




9 results, page 1 of 1

Stability of FeVO4-II under Pressure: A First-Principles Study

PRICILA BETBIRAI ROMERO VAZQUEZ SINHUE LOPEZ MORENO Daniel Errandonea (2022)

"In this work, we report first-principles calculations to study FeVO4 in the CrVO4-type (phase II) structure under pressure. Total-energy calculations were performed in order to analyze the structural parameters, the electronic, elastic, mechanical, and vibrational properties of FeVO4-II up to 9.6 GPa for the first time. We found a good agreement in the structural parameters with the experimental results available in the literature. The electronic structure analysis was complemented with results obtained from the Laplacian of the charge density at the bond critical points within the Quantum Theory of Atoms in Molecules methodology. Our findings from the elastic, mechanic, and vibrational properties were correlated to determine the elastic and dynamic stability of FeVO4-II under pressure. Calculations suggest that beyond the maximum pressure covered by our study, this phase could undergo a phase transition to a wolframite-type structure, such as in CrVO4 and InVO4."

Article

FeVO4 under pressure CrVO4-type structure First-principles Mechanical properties Vibrational properties Electronic properties CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA FÍSICA FÍSICA DEL ESTADO SÓLIDO CRISTALOGRAFÍA CRISTALOGRAFÍA

Thermal and mechanical properties of PLA-based multiscale cellulosic biocomposites

MIGUEL ANGEL RUZ CRUZ Pedro Jesús Herrera Franco Emmanuel Alejandro Flores Johnson MARIA VERONICA MORENO CHULIM LUCIANO MIGUEL GALERA MANZANO Alex Valadez González (2022)

In this work polylactic acid (PLA) based multiscale cellulosic biocomposites were prepared with the aim to evaluate the effect of the incorporation of cellulose nanocrystals (CNCs) on the PLA biocomposites reinforced with cellulose microfibers (MFCs). For this, PLA composite materials reinforced with both MFCs and with a combination of MFCs and CNCs were prepared, while keeping the content of cellulosic reinforcements constant. The thermal and mechanical properties of these multiscale PLA biocomposites were characterized by thermogravimetry (TGA), differential scanning calorimetry (DSC), flexural mechanical and, dynamic mechanical (DMA) tests. Likewise, they were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The results show that the replacement of MFCs by CNCs in the 1–5% range appreciably modifies the thermal and mechanical properties of multiscale compounds. For example, they increase the thermal stability of the materials, modify the PLA crystallization process and play the role of adhesion promoters since the mechanical properties in flexure increase in the order of 40% and the storage modulus increases in the order of 35% at room temperature. Also, the addition of CNCs increases the relaxation temperature of the material from 50 to 60 °C, thereby expanding the temperature range for its use. © 2022 The Author(s)

Article

MULTISCALE BIOCOMPOSITES CELLULOSE MICROFIBER CELLULOSE NANOCRYSTALS HIERARCHICAL STRUCTURE PROPERTIES INGENIERÍA Y TECNOLOGÍA CIENCIAS TECNOLÓGICAS TECNOLOGÍA DE MATERIALES PROPIEDADES DE LOS MATERIALES PROPIEDADES DE LOS MATERIALES

Impact of manures and fertilizers on yield and soil properties in a rice-wheat cropping system

Alison Laing Akbar Hossain (2023)

The use of chemical fertilizers under a rice-wheat cropping system (RWCS) has led to the emergence of micronutrient deficiency and decreased crop productivity. Thus, the experiment was conducted with the aim that the use of organic amendments would sustain productivity and improve the soil nutrient status under RWCS. A three-year experiment was conducted with different organic manures i.e. no manure (M0), farmyard manure@15 t ha-1 (M1), poultry manure@6 t ha-1(M2), press mud@15 t ha-1(M3), rice straw compost@6 t ha-1(M4) along with different levels of the recommended dose of fertilizer (RDF) i.e. 0% (F1), 75% (F2 and 100% (F3 in a split-plot design with three replications and plot size of 6 m x 1.2 m. Laboratory-based analysis of different soil as well as plant parameters was done using standard methodologies. The use of manures considerably improved the crop yield, macronutrients viz. nitrogen, phosphorus, potassium and micronutrients such as zinc, iron, manganese and copper, uptake in both the crops because of nutrient release from decomposed organic matter. Additionally, the increase in fertilizer dose increased these parameters. The system productivity was maximum recorded under F3M1 (13,052 kg ha-1) and results were statistically identical with F3M2 and F3M3. The significant upsurge of macro and micro-nutrients in soil and its correlation with yield outcomes was also observed through the combined use of manures as well as fertilizers. This study concluded that the use of 100% RDF integrated with organic manures, particularly farmyard manure would be a beneficial resource for increased crop yield, soil nutrient status and system productivity in RWCS in different regions of India.

Article

CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA ORGANIC FERTILIZERS YIELDS SOIL PROPERTIES RICE WHEAT CROPPING SYSTEMS

Chemically modified nanoparticles for enhanced antioxidant and antimicrobial properties with cinnamon essential oil

Aaron Azael Lopez Cano VERONICA MARTINEZ AGUILAR Mariana Peña-Juárez Ricardo López Esparza Enrique Delgado Alvarado Emmanuel Gutierrez MAYRA DEL ANGEL MONROY Elias Perez Agustin L. Herrera-May JOSE AMIR GONZALEZ CALDERON (2023)

We explored the potential of different nanoparticles (TiO2, CaCO3, and Al2O3), considering their pure form and modified with cinnamon essential oil (CEO). These materials were characterized using various techniques, including FTIR spectroscopy, XRD analysis, TGA, and SEM. The interaction between CEO and nanoparticles changed depending on the nanoparticle type. Al2O3 nanoparticles exhibited the strongest interaction with CEO, increasing their antioxidant capacity by around 40% and their transfer of antimicrobial properties, particularly against Gram-negative bacteria. In contrast, TiO2 and CaCO3 nanoparticles showed limited interaction with CEO, resulting in lower antioxidant capacity and antimicrobial activity. Incorporating pure and CEO-modified nanoparticles into polylactic acid (PLA) films improved their mechanical and thermal properties, which are suitable for applications requiring greater strength. This research highlights the potential of metal oxide nanoparticles to enhance the antimicrobial and antioxidant capabilities of polymers. In addition, incorporating cinnamon essential oil can increase the antioxidant and antimicrobial effectiveness of the metal oxide nanoparticles and improve the mechanical and thermal properties of PLA films. Thus, these PLA films exhibit favorable characteristics for active packaging applications.

Author contributions: conceptualization, V.M.-A. and J.A.G.-C.; formal analysis, A.A.L.-C., V.M.-A., M.G.P.-J. and M.D.A.-M.; funding acquisition, A.L.H.-M.; methodology, A.A.L.-C. and V.M.-A.; investigation, E.P.; supervision, R.L.-E., E.D.-A., and E.J.G.-C.; validation, A.L.H.-M. and J.A.G.-C.; writing—original draft, V.M.-A.; writing—review and editing, M.G.P.-J. and J.A.G.-C. All authors have read and agreed to the published version of the manuscript.

Funding: J.A. Gonzalez-Calderon thanks CONAHCYT for supporting the Catedras-CONAHCYT Program, and Verónica Martinez thanks CONAHCYT for the Doctoral Fellowship. The authors also want to thank CONAHCYT for funding the project CF2019 265239 “Ciencia de Frontera”, which made this work possible.

Institutional review board statement: Not applicable.

Informed consent statement: Not applicable.

Data availability statement: Data is contained within the article.

Acknowledgments: The authors acknowledge Claudia Hernández and Rosa Lina Tovar for their support during the XRD and SEM analyses.

Conflicts of interest: The authors declare no conflict of interest.

Disclaimer/publisher’s note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Article

Cinnamon essential oil Antioxidant activity Antimicrobial properties Nanoparticles Polylactic acid films INGENIERÍA Y TECNOLOGÍA CIENCIAS TECNOLÓGICAS OTRAS ESPECIALIDADES TECNOLÓGICAS OTRAS OTRAS

Tensile behavior of 3D printed polylactic acid (PLA) based composites reinforced with natural fiber

Eliana M Agaliotis BALTAZAR DAVID AKE CONCHA ALEJANDRO MAY PAT Juan Pablo Morales Arias Celina Bernal Alex Valadez González Pedro Jesús Herrera Franco Gwenaelle Proust JUAN FRANCISCO KOH DZUL José Gonzalo Carrillo Baeza Emmanuel Alejandro Flores Johnson (2022)

Natural fiber-reinforced composite (NFRC) filaments for 3D printing were fabricated using polylactic acid (PLA) reinforced with 1–5 wt% henequen flour comprising particles with sizes between 90–250 μm. The flour was obtained from natural henequen fibers. NFRCs and pristine PLA specimens were printed with a 0° raster angle for tension tests. The results showed that the NFRCs’ measured density, porosity, and degree of crystallinity increased with flour content. The tensile tests showed that the NFRC Young’s modulus was lower than that of the printed pristine PLA. For 1 wt% flour content, the NFRCs’ maximum stress and strain to failure were higher than those of the printed PLA, which was attributed to the henequen fibers acting as reinforcement and delaying crack growth. However, for 2 wt% and higher flour contents, the NFRCs’ maximum stress was lower than that of the printed PLA. Microscopic characterization after testing showed an increase in voids and defects, with the increase in flour content attributed to particle agglomeration. For 1 wt% flour content, the NFRCs were also printed with raster angles of ±45° and 90° for comparison; the highest tensile properties were obtained with a 0° raster angle. Finally, adding 3 wt% content of maleic anhydride to the NFRC with 1 wt% flour content slightly increased the maximum stress. The results presented herein warrant further research to fully understand the mechanical properties of printed NFRCs made of PLA reinforced with natural henequen fibers. © 2022 by the authors.

Article

POLYLACTIC ACID (PLA) NATURAL FIBER HENEQUEN FIBER NATURAL FIBER REINFORCED COMPOSITE (NFRC) ADDITIVE MANUFACTURING 3D PRINTING MECHANICAL PROPERTY INGENIERÍA Y TECNOLOGÍA CIENCIAS TECNOLÓGICAS TECNOLOGÍA DE MATERIALES PROPIEDADES DE LOS MATERIALES PROPIEDADES DE LOS MATERIALES

Synthesis of hollow carbon spheres by chemical activation of carbon nanoparticles for their use in electrochemical capacitor

Cesar Eduardo Sanchez Rodriguez EDUARDO TOVAR MARTINEZ MARISOL REYES REYES Luis Felipe Cházaro Ruiz ROMAN LOPEZ SANDOVAL (2022)

"Naphthalene combustion has been used to synthesize grams per hour of solid carbon spheres (CS). The carbon soot was activated by acid treatment consisting in a mixture of HNO3 and H2SO4 (1/3 v/v) to produce hollow carbon spheres (HCS). The effect of two concentrations of CSs (5 and 10 mg mL−1) in the acid mixture, on the physicochemical properties of the activated HCSs was studied. The HSCs were subjected to a thermal treatment to increase their graphitization to enhance their electrical conductivity. High-resolution transmission electron microscopy confirmed the formation of HCSs due to the acid treatment whereas FTIR spectra showed that the chemical activation produced functional groups on the carbon spheres surface and the heat treatment effect to remove some of them as well. A specific surface area of 300 m2 g−1 and a large density of micropores for the acid-treated CSs as well as the heat-treated CSs were estimated by analysis of N2 adsorption-desorption isotherms. A specific capacitance 70 F g−1 was calculated by cyclic voltammetry of the acid and thermally treated HCSs at 5 mV s−1, for both CS concentrations, indicating the possibility of synthesizing these HCSs using a simple method in large quantities for their use in electrochemical capacitors."

Article

Physicochemical properties Carbon nanoparticles Chemical activation Electrochemical capacitor BIOLOGÍA Y QUÍMICA QUÍMICA QUÍMICA

Estimating lime requirements for tropical soils: Model comparison and development

Fernando Aramburu Merlos João Vasco Silva Frédéric Baudron Robert Hijmans (2023)

Acid tropical soils may become more productive when treated with agricultural lime, but optimal lime rates have yet to be determined in many tropical regions. In these regions, lime rates can be estimated with lime requirement models based on widely available soil data. We reviewed seven of these models and introduced a new model (LiTAS). We evaluated the models’ ability to predict the amount of lime needed to reach a target change in soil chemical properties with data from four soil incubation studies covering 31 soil types. Two foundational models, one targeting acidity saturation and the other targeting base saturation, were more accurate than the five models that were derived from them, while the LiTAS model was the most accurate. The models were used to estimate lime requirements for 303 African soil samples. We found large differences in the estimated lime rates depending on the target soil chemical property of the model. Therefore, an important first step in formulating liming recommendations is to clearly identify the soil property of interest and the target value that needs to be reached. While the LiTAS model can be useful for strategic research, more information on acidity-related problems other than aluminum toxicity is needed to comprehensively assess the benefits of liming.

Article

Exchangeable Acidity Aluminum Saturation Calcium Carbonate Equivalent CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CHEMICOPHYSICAL PROPERTIES LIMES TROPICAL ZONES ACID SOILS ALUMINIUM BASE SATURATION CALCIUM CARBONATE

Control de sistemas usando aprendizaje de máquina

Systems control using machine learning

Jesús Martín Miguel Martínez (2023)

El aprendizaje por refuerzo es un paradigma del aprendizaje de máquina con un amplio desarrollo y una creciente demanda en aplicaciones que involucran toma de decisiones y control. Es un paradigma que permite el diseño de controladores que no dependen directamente del modelo que describe la dinámica del sistema. Esto es importante ya que en aplicaciones reales es frecuente que no se disponga de dichos modelos de manera precisa. Esta tesis tiene como objetivo implementar un controlador óptimo en tiempo discreto libre de modelo. La metodología elegida se basa en algoritmos de aprendizaje por refuerzo, enfocados en sistemas con espacios de estado y acción continuos a través de modelos discretos. Se utiliza el concepto de función de valor (Q-función y función V ) y la ecuación de Bellman para resolver el problema del regulador cuadrático lineal para un sistema mecánico masa-resorte-amortiguador, en casos donde se tiene conocimiento parcial y desconocimiento total del modelo. Para ambos casos las funciones de valor son definidas explícitamente por la estructura de un aproximador paramétrico, donde el vector de pesos del aproximador es sintonizado a través de un proceso iterativo de estimación de parámetros. Cuando se tiene conocimiento parcial de la dinámica se usa el método de aprendizaje por diferencias temporales en un entrenamiento episódico, que utiliza el esquema de mínimos cuadrados con mínimos cuadrados recursivos en la sintonización del crítico y descenso del gradiente en la sintonización del actor, el mejor resultado para este esquema es usando el algoritmo de iteración de valor para la solución de la ecuación de Bellman, con un resultado significativo en términos de precisión en comparación a los valores óptimos (función DLQR). Cuando se tiene desconocimiento de la dinámica se usa el algoritmo Q-learning en entrenamiento continuo, con el esquema de mínimos cuadrados con mínimos cuadrados recursivos y el esquema de mínimos cuadrados con descenso del gradiente. Ambos esquemas usan el algoritmo de iteración de política para la solución de la ecuación de Bellman, y se obtienen resultados de aproximadamente 0.001 en la medición del error cuadrático medio. Se realiza una prueba de adaptabilidad considerando variaciones que puedan suceder en los parámetros de la planta, siendo el esquema de mínimos cuadrados con mínimos cuadrados recursivos el que tiene los mejores resultados, reduciendo significativamente ...

Reinforcement learning is a machine learning paradigm with extensive development and growing demand in decision-making and control applications. This technique allows the design of controllers that do not directly depend on the model describing the system dynamics. It is useful in real-world applications, where accurate models are often unavailable. The objective of this work is to implement a modelfree discrete-time optimal controller. Through discrete models, we implemented reinforcement learning algorithms focused on systems with continuous state and action spaces. The concepts of value-function, Q-function, V -function, and the Bellman equation are employed to solve the linear quadratic regulator problem for a mass-spring-damper system in a partially known and utterly unknown model. For both cases, the value functions are explicitly defined by a parametric approximator’s structure, where the weight vector is tuned through an iterative parameter estimation process. When partial knowledge of the dynamics is available, the temporal difference learning method is used under episodic training, utilizing the least squares with a recursive least squares scheme for tuning the critic and gradient descent for the actor´s tuning. The best result for this scheme is achieved using the value iteration algorithm for solving the Bellman equation, yielding significant improvements in approximating the optimal values (DLQR function). When the dynamics are entirely unknown, the Q-learning algorithm is employed in continuous training, employing the least squares with recursive least squares and the gradient descent schemes. Both schemes use the policy iteration algorithm to solve the Bellman equation, and the system’s response using the obtained values was compared to the one using the theoretical optimal values, yielding approximately zero mean squared error between them. An adaptability test is conducted considering variations that may occur in plant parameters, with the least squares with recursive least squares scheme yielding the best results, significantly reducing the number of iterations required for convergence to optimal values.

Master thesis

aprendizaje por refuerzo, control óptimo, control adaptativo, sistemas mecánicos, libre de modelo, dinámica totalmente desconocida, aproximación paramétrica, Q-learning, iteración de política reinforcement learning, optimal control, adaptive control, mechanical systems, modelfree, utterly unknown dynamics, parametric approximation, Q-learning, policy iteration INGENIERÍA Y TECNOLOGÍA CIENCIAS TECNOLÓGICAS TECNOLOGÍA DE LOS ORDENADORES INTELIGENCIA ARTIFICIAL INTELIGENCIA ARTIFICIAL