Advanced search


Knowledge area




62 results, page 1 of 7

Servicios digitales públicos: el IMPI y la emisión de títulos de patente que realiza

Pamela Serrano Magaña (2023)

Las Tecnologías de la Información y Comunicación (TIC) han logrado acercar a la población a contenidos y formas de intercambio de información que anteriormente no eran posibles; el Internet ha derrumbado fronteras entre las sociedades, los gobiernos, el conocimiento y las oportunidades, creando a su vez nuevas necesidades para caer en el círculo virtuoso de la innovación.

Este artículo plantea una transformación integral en una etapa digital específica dentro de los procesos internos del IMPI, desde el expediente físico hacia el expediente digital para automatizar los procesos de emisión de títulos de concesión de patentes de invención lo que resultaría en una reducción del índice de errores humanos involuntarios, así como la mejora en la atención a los usuarios, al ofrecer mayor certeza en los servicios proporcionados y mayor seguridad en el tratamiento de su información, así como un apego a las normas jurídicas aplicables. El objetivo de esta implementación es reducir el índice de equivocaciones en la documentación oficial emitida disminuyendo en consecuencia, los retrasos y las incidencias fortuitas, y para dicho fin se proponen dos soluciones. La primera, el desarrollar un nuevo módulo dentro del sistema principal existente, que permitirá exportar los datos y generar el título directamente en el formato requerido. La segunda, es la utilización de tecnología de automatización robótica de procesos o RPA por sus siglas en inglés (Robotic Process Automation) para hacer uso de una herramienta que sustituya a la transcripción manual por una transcripción automática.

Other

Master Degree Work

Digitalización Servicios digitales Gobierno electrónico Instituto Mexicano de la Propiedad Industrial INGENIERÍA Y TECNOLOGÍA CIENCIAS TECNOLÓGICAS CIENCIAS TECNOLÓGICAS

Application of ammonium to a N limited arable soil enriches a succession of bacteria typically found in the rhizosphere

Yendi Navarro-Noya Marco Luna_Guido Nele Verhulst Bram Govaerts Luc Dendooven (2022)

Crop residue management and tillage are known to affect the soil bacterial community, but when and which bacterial groups are enriched by application of ammonium in soil under different agricultural practices from a semi-arid ecosystem is still poorly understood. Soil was sampled from a long-term agronomic experiment with conventional tilled beds and crop residue retention (CT treatment), permanent beds with crop residue burned (PBB treatment) or retained (PBC) left unfertilized or fertilized with 300 kg urea-N ha-1 and cultivated with wheat (Triticum durum L.)/maize (Zea mays L.) rotation. Soil samples, fertilized or unfertilized, were amended or not (control) with a solution of (NH4)2SO4 (300 kg N ha-1) and were incubated aerobically at 25 ± 2 °C for 56 days, while CO2 emission, mineral N and the bacterial community were monitored. Application of NH4+ significantly increased the C mineralization independent of tillage-residue management or N fertilizer. Oxidation of NH4+ and NO2- was faster in the fertilized soil than in the unfertilized soil. The relative abundance of Nitrosovibrio, the sole ammonium oxidizer detected, was higher in the fertilized than in the unfertilized soil; and similarly, that of Nitrospira, the sole nitrite oxidizer. Application of NH4+ enriched Pseudomonas, Flavisolibacter, Enterobacter and Pseudoxanthomonas in the first week and Rheinheimera, Acinetobacter and Achromobacter between day 7 and 28. The application of ammonium to a soil cultivated with wheat and maize enriched a sequence of bacterial genera characterized as rhizospheric and/or endophytic independent of the application of urea, retention or burning of the crop residue, or tillage.

Article

CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA AMMONIUM CROP RESIDUES WHEAT MAIZE TILLAGE SOIL

Closing the yield gap of soybean (Glycine max (L.) Merril) in Southern Africa: a case of Malawi, Zambia, and Mozambique

Siyabusa Mkuhlani Isaiah Nyagumbo (2023)

Introduction: Smallholder farmers in Sub-Saharan Africa (SSA) are increasingly producing soybean for food, feed, cash, and soil fertility improvement. Yet, the difference between the smallholder farmers’ yield and either the attainable in research fields or the potential from crop models is wide. Reasons for the yield gap include low to nonapplication of appropriate fertilizers and inoculants, late planting, low plant populations, recycling seeds, etc. Methods: Here, we reviewed the literature on the yield gap and the technologies for narrowing it and modelled yields through the right sowing dates and suitable high-yielding varieties in APSIM. Results and Discussion: Results highlighted that between 2010 and 2020 in SSA, soybean production increased; however, it was through an expansion in the cropped area rather than a yield increase per hectare. Also, the actual smallholder farmers’ yield was 3.8, 2.2, and 2.3 times lower than the attainable yield in Malawi, Zambia, and Mozambique, respectively. Through inoculants, soybean yield increased by 23.8%. Coupling this with either 40 kg ha−1 of P or 60 kg ha−1 of K boosted the yields by 89.1% and 26.0%, respectively. Overall, application of 21–30 kg ha-1 of P to soybean in SSA could increase yields by about 48.2%. Furthermore, sowing at the right time increased soybean yield by 300%. Although these technologies enhance soybean yields, they are not fully embraced by smallholder farmers. Hence, refining and bundling them in a digital advisory tool will enhance the availability of the correct information to smallholder farmers at the right time and improve soybean yields per unit area.

Article

Decision Support Tools Digital Tools Site-Specific Recommendations CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA DECISION SUPPORT SYSTEMS LEGUMES YIELDS SOYBEANS

The fate of rice crop residues and context-dependent greenhouse gas emissions: Model-based insights from Eastern India

Sonam Sherpa virender kumar Andrew Mcdonald (2024)

Crop residue burning is a common practice in many parts of the world that causes air pollution and greenhouse gas (GHG) emissions. Regenerative practices that return residues to the soil offer a ‘no burn’ pathway for addressing air pollution while building soil organic carbon (SOC). Nevertheless, GHG emissions in rice-based agricultural systems are complex and difficult to anticipate, particularly in production contexts with highly variable hydrologic conditions. Here we predict long-term net GHG fluxes for four rice residue management strategies in the context of rice-wheat cropping systems in Eastern India: burning, soil incorporation, livestock fodder, and biochar. Estimations were based on a combination of Tier 1, 2, and 3 modelling approaches, including 100-year DNDC simulations across three representative soil hydrologic categories (i.e., dry, median, and wet). Overall, residue burning resulted in total direct GHG fluxes of 2.5, 6.1, and 8.7 Mg CO2-e in the dry, median, and wet hydrologic categories, respectively. Relative to emissions from burning (positive values indicate an increase) for the same dry to wet hydrologic categories, soil incorporation resulted in a −0.2, 1.8, or 3.1 Mg CO2-e change in emissions whereas use of residues for livestock fodder increased emissions by 2.0, 2.1, or 2.3 Mg CO2-e. Biochar reduced emissions relative to burning by 2.9 Mg CO2-e in all hydrologic categories. This study showed that the production environment has a controlling effect on methane and, therefore, net GHG balance. For example, wetter sites had 2.8–4.0 times greater CH4 emissions, on average, than dry sites when rice residues were returned to the soil. To effectively mitigate burning without undermining climate change mitigation goals, our results suggest that geographically-target approaches should be used in the rice-based systems of Eastern India to incentivize the adoption of regenerative ‘no burn’ residue management practices.

Article

Soil Carbon Rice Residue Burning Life Cycle Assessment CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA SOIL CARBON RICE LIFE CYCLE GREENHOUSE GASES CLIMATE CHANGE