Author: JULIAN CRUZ OLIVARES

Waste tire rubber particles modified by gamma radiation and their use as modifiers of concrete

GONZALO MARTINEZ BARRERA JULIAN CRUZ OLIVARES Juan Jose del Coz Diaz Felipe Pedro Alvarez Rabanal Fernando Lopez Gayarre MIGUEL MARTINEZ LOPEZ (2020)

En este trabajo se produjo concreto añadiendo hule de llantas de desecho, posteriormente se irradió con rayos gamma, para finalmente evaluar sus propiedades mecánicas. Los efectos de la radiación en el hule de llanta se evaluaron con diferentes técnicas analíticas.

in this work, cement concrete specimens were produced with cement, water, rock crushed and sand; this last was partially substituted by particles of waste tire rubber. Then the compression properties of the specimens were evaluated following the experimental parameters: a) gamma irradiation dose (200, 250 and 300 kGy), b) particle size of tire rubber (0.85 and 2.8 mm), and c) particulate concentration of tire rubber (1, 3 and 5 wt. %). In addition, the mechanical compression results were related with the changes on the physicochemical properties of the irradiated tire particles, which were analyzed by FT-IR, Raman, UV–vis, SEM, XRD, TGA and DSC.

Article

Waste tire rubber, gamma radiation, concrete, compressive strength, elasticity modulus INGENIERÍA Y TECNOLOGÍA

Ionic gelation encapsulation of sesame oil with sodium alginate-nopal mucilage blends: Encapsulation efficiency and oxidative stability

SANDRA KARINA VELAZQUEZ GUTIERREZ ERIK ALPIZAR REYES JULIAN CRUZ OLIVARES JOSE FRANCISCO BARRERA PICHARDO MARIA EVA RODRIGUEZ HUEZO CESAR PEREZ ALONSO (2020)

This study provides a new way for preventing the oxidation of sesame oil by ionic gelation method, where SO can be encapsulated in sodium alginate-nopal mucilage hydrogel beads as wall material. The SA-NM hydrogel beads had heterogeneous surface morphologies, where el NM acted as structural support and controlling fractures in the beads after drying process, making the gel matrix more flexible. SA-NM hydrogel beads after the drying process leads to an irregular spherical shape that the SA beads. SA-NM hydrogel beads is characterized by high yield (>83.34%) and encapsulation efficiency (> 75.44%), and limited surface oil (< 6.20%). The greatest effect of protection against oxidation of SO was reached as the proportion of NM increases in the mixtures, due to the strong electrostatic interaction that occurs between the NM and the SA during the ionic gelation process, promoting the formation of a robust complex on the surface of the hydrogel beads. Finally, the ionic gelation method turned out to be a competitive option to encapsulate and protect sesame oil in comparison to most common methods such as spray drying, lyophilization, fluidized bed drying and coacervation. It is an easy to implement technology, does not operate at high or low temperatures that affect the deterioration of the encapsulated agent and does not require pretreatment of the encapsulating agents to be used. However, it does not offer a great diversity of biopolymers as encapsulating agents with respect to those that can be used in other encapsulation technologies. In addition, the particle sizes obtained by ion gelation are significantly larger compared to techniques such as spray drying and complex coacervation, although the size will ultimately depend on the product that needs to be produced and marketed.

Hydrogel beads were formed by ionic gelation between sodium alginate-nopal mucilage (SA-NM) for enhancing the encapsulation efficiency and oxidative stability of sesame oil (SO). SA-NM blends (2% w/v) were used 1:1 and 1:1.5 (w/w) ratios. Ionic gelation was induced by dripping the SO-SA-NM homogenized dispersions with the help of a syringe into CaCl2 (2.5% w/v) solution with continuous stirring. The resulting beads were oven-dried and stored under controlled temperature conditions. The hydrogel beads were evaluated for size and shape, and for SO encapsulation efficiency, oxidative stability, and release kinetics. Results were compared with hydrogel beads made with only SA (2% w/v). The SA beads had a regular spherical shape with a mean size of 2.19 mm, while the SA-NM hydrogels beads had an irregular semi-spherical shape with a significant smaller (2.06-2.10 mm) size. SA-NM hydrogel beads displayed higher encapsulation efficiency (> 75.44%) than SA beads (63.48%), and provided better protection to SO against oxidation during storage than the SA beads and free SO oil. Oxidation kinetics were of zero-order in all cases. The release kinetics of SO was diffusion controlled and was significantly slower for SA-NM than for SA beads. Our results indicate that SA-NM mixtures may be considered as potential additives for food industry applications.

The authors wish to acknowledge the partial financial support of this research to the Universidad Autónoma del Estado de México through grant 4738/2019/CIB

Article

Nopal mucilage Sodium alginate Ionic gelation Sesame oil Oxidative stability INGENIERÍA Y TECNOLOGÍA

Aplicaciones electroquímicas al tratamiento de aguas residuales

Manuel Andrés Rodrigo Pablo Cañizares FRANCISCO JAVIER LLANOS HUESCA JUSTO LOBATO FABIOLA MARTINEZ RAMIREZ KAREN CRISTINA SAEZ GOMEZ ARTURO COLIN CRUZ Armando Diez Pérez LINA AGUSTINA BERNAL MARTINEZ THELMA BEATRIZ PAVON SILVA VICTOR FRANCISCO PACHECO SALAZAR BERNARDO ANTONIO FRONTANA URIBE RUBEN CESAR VASQUEZ MEDRANO FERNANDO FELIPE RIVERA ITURBE MARTIN ROGELIO CRUZ DIAZ ELIGIO PASTOR RIVERO MARTINEZ IGNACIO GONZALEZ MARTINEZ GABRIELA ROA MORALES IVONNE LINARES HERNANDEZ ARACELI AMAYA CHAVEZ CARLOS EDUARDO BARRERA DIAZ ANAID CANO QUIROZ RICARDO VICTORIA LEON SARAI VELAZQUEZ PEÑA VERONICA MARTINEZ MIRANDA Patricia Balderas Hernández JUAN MANUEL PERALTA HERNANDEZ MARCELA MENDEZ TOVAR ROBERTO ACERO RUEDA Ricardo Jaime Guerra Sánchez Enric Brillas VIOLETA LUGO LUGO Sergio Alejandro Martínez Delgadillo CARLOS SOLIS MORELOS JULIAN CRUZ OLIVARES MARIA TERESA RAMIREZ SILVA Manuel Eduardo Palomar Pardavé (2014)

El presente libro tiene como finalidad compilar numerosas investigaciones en el campo de la tecnología electroquímica y sus aplicaciones ambientales, contando con la colaboración de un gran número de investigadores tanto nacionales como extranjeros, proponiendo con ello una visión amplia dentro de la aplicación de la electroquímica. Los temas que integran esta obra se escogieron cuidadosamente considerando desde los principios básicos de la electroquímica aplicada al tratamiento de aguas residuales hasta los parámetros a considerar durante el diseño, operación y evaluación de dichos sistemas, sin dejar de lado las aplicaciones utilizadas en la actualidad en la industria, la docencia y la investigación. Este libro reúne diversas temáticas por lo que puede considerarse como un compendio de aquellos elementos que el lector requiere para poder tener una visión amplia de las aplicaciones de la electroquímica en el campo del tratamiento de agua residual.

En el Capítulo 1 se presenta una primera impresión de los Fundamentes de la Electroquímica Ambiental, en donde los autores explican cómo esta disciplina es una nueva área de la ciencia en donde se emplean conocimientos de Electroquímica, Ingeniería Química y Ciencia de Materiales, así como las aplicaciones específicas para la remediación ambiental. En el Capítulo 2 los autores ofrecen una descripción de los principales parámetros fisicoquímicos y biológicos que se emplean para definir a la calidad del agua. Este capítulo describe en función de qué características físicas, químicas y biológicas se puede evaluar a un agua residual así como también la aplicación de estas características como variables de control de un proceso de tratamiento y también como el empleo de ellas para limitar las concentraciones máximas permisibles de descarga de aguas residuales. El Capítulo 3 se refiere a uno de los procesos más empleados en el tratamiento de agua: la coagulación-floculación. Se aborda desde una óptica teórica hasta la descripción de un ejemplo de aplicación en la industria. Resulta importante incluir este capítulo ya que uno de los métodos más prometedores en la electroquímica ambiental es la electrocoagulación, la cual se narra en el Capítulo 6. Las bases de las celdas de laboratorio y reactores industriales electroquímicos se relatan en el Capítulo 4. En particular, se refieren las implicaciones que tienen las principales características físicas y de diseño de celdas de laboratorio y reactores electroquímicos industriales que permiten obtener transformaciones eficientes gracias a un correcto control del potencial de electrodo en estos sistemas. La implementación de procesos electroquímicos para su aplicación a nivel industrial, requiere del diseño eficiente del dispositivo central: el reactor electroquímico. Por lo que, en el Capítulo 5 se presentan los elementos de análisis de reactores electroquímicos para su diseño y caracterización. El Capítulo 7 describe bajo qué circunstancias se puede llevar a cabo el proceso de electroflotación. Los autores muestran cómo este proceso está influenciado por el pH de la solución acuosa, la densidad de corriente y el tipo de electrodos que se emplean. El lector encontrará en el Capítulo 8 las bases teóricas de uno de los procesos que involucra la química de la reacción de Fenton, así como las aplicaciones ambientales para el tratamiento de soluciones sintéticas y reales con diferentes contaminantes refractarios, tales como plaguicidas, colorantes, productos de cuidado personal, fármacos y residuos químicos industriales. En el Capítulo 9 se presentan algunos conceptos fundamentales sobre la Electrooxidación, también conocida como oxidación electroquímica, la cual está enfocada a realizar la oxidación de contaminantes presentes en aguas residuales sobre la superficie de electrodos. La tecnología para la electrogeneración de peróxido de hidrógeno y su empleo en el tratamiento de agua residual se describe en el Capítulo 10. Uno de los metales pesados que tienen un alto grado de toxicidad en el ambiente es el Cr(VI), el cual no puede ser removido por métodos convencionales por lo que una tecnología que puede emplearse en este tratamiento se relata en el Capítulo 11. En el Capítulo 12 se presentan los avances más recientes cuando se emplean los métodos electroquímicos con algún otro tipo de tratamiento, lo que ha resultado en la obtención de sinergias en los procesos, lo que implica una reducción en los costos de operación. Finalmente, en el Capítulo 13, se presenta el tema de usos y aplicaciones de sensores químicos y electroquímicos para la detección de contaminantes en agua y agua residual.

Book

Aplicaciones electroquímicas aguas residuales sensores químicos BIOLOGÍA Y QUÍMICA