Author: DOMANCAR ORONA TAMAYO

Comparative transcriptome analysis of cultivated and wild seeds of Salvia hispanica (chia)

DOMANCAR ORONA TAMAYO (2018)

Salvia hispanica (chia) constituted an important crop for pre-Columbian civilizations and is considered a superfood for its rich content of essential fatty acids and proteins. In this study, we performed the first comprehensive comparative transcriptome analysis between seeds from cultivated varieties and from accessions collected from native wild populations in Mexico. From the 69,873 annotated transcripts assembled de novo, enriched functional categories and pathways revealed that the lipid metabolism was one of the most activated processes. Expression changes were detected among wild and cultivated groups and among growth conditions in transcripts responsible for triacylglycerol and fatty acid synthesis and degradation. We also quantified storage protein fractions that revealed variation concerning nutraceutical proteins such as albumin and glutelin. Genetic diversity estimated with 23,641 single nucleotide polymorphisms (SNPs) revealed that most of the variation remains in the wild populations, and that a wild-type cultivated variety is genetically related to wild accessions. Additionally, we reported 202 simple sequence repeat (SSRs) markers useful for population genetic studies. Overall, we provided transcript variation that can be used for breeding programs to further develop chia varieties with enhanced nutraceutical traits and tools to explore the genetic diversity and history of this rediscovered plant.

Article

Botánica Salvia - Aplicaciones industriales CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CIENCIAS AGRARIAS AGRONOMÍA BOTÁNICA GENERAL BOTÁNICA GENERAL

Short-term proteomic dynamics reveal metabolic factory for active extrafloral nectar secretion by Acacia cornigera antplants

DOMANCAR ORONA TAMAYO (2013)

Despite the ecological and evolutionary importance of nectar, mechanisms controlling its synthesis and secretion remain largely unknown. It is widely believed that nectar is ‘secreted phloem sap’, but current research reveals a biochemical complexity that is unlikely to stem directly from the phloem. We used the short daily peak in production of extrafloral nectar by Acacia cornigera to investigate metabolic and proteomic dynamics before, during and after 2 h of diurnal secretion. Neither hexoses nor dominating nectar proteins (nectarins) were detected in the phloem before or during nectar secretion, excluding the phloem as the direct source of major nectar components. Enzymes involved in the anabolism of sugars, amino acids, proteins, and nectarins, such as invertase, b–1,3–glucanase and thaumatin-like protein, accumulated in the nectary directly before secretion and diminished quantitatively after the daily secretion process. The corresponding genes were expressed almost exclusively in nectaries. By contrast, protein catabolic enzymes were mainly present and active after the secretion peak, and may function in termination of the secretion process. Thus the metabolic machinery for extrafloral nectar production is synthesized and active during secretion and degraded thereafter. Knowing the key enzymes involved and the spatio-temporal patterns in their expression will allow elucidation of mechanisms by which plants control nectar quality and quantity.

Article

Biotecnología Acacia cornigera CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CIENCIAS AGRARIAS AGRONOMÍA PROTECCIÓN DE LOS CULTIVOS PROTECCIÓN DE LOS CULTIVOS

Diverse Molecular Resistance Mechanisms of Bacillus megaterium During Metal Removal Present in a Spent Catalyst

DOMANCAR ORONA TAMAYO (2017)

Bacillus megaterium strain MNSH1-9K-1, isolated from a high-metal content site in Guanajuato, Mexico, has the intrinsic capacity to remove vanadium (V) and nickel (Ni) from a petrochemical spent catalyst, and counteract the toxic effects produced in the cell due to the presence of oxidative stress. Since knowledge of the molecular components involved in the microbial resistance to spent catalysts is scarce, this study aimed to identify the proteins potentially involved in the enhanced resistance ofa B. megaterium strain, during the removal of metals contained in a spent catalyst. Thus, the current research uses a proteomic approach to investigate and evidence the differences in the molecular resistance mechanisms of two B. megaterium strains, one isolated from a mining site and a wild type strain, when both are exposed to a spent catalyst. In addition, we studied their ability to eliminate nickel (Ni), vanadium (V), aluminum (Al) and molybdenum (Mo). The data presented here may contribute to the knowledge of the molecular mechanisms involved in the resistance of B. megaterium to high metal content wastes, as well as its potential utilization for the recovery of valuable industrial metals.

Article

Bacillus megaterium Biotecnología CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CIENCIAS AGRARIAS FITOPATOLOGÍA BACTERIAS BACTERIAS

Biochemical Traits in the Flower Lifetime of a Mexican Mistletoe Parasitizing Mesquite Biomass

DOMANCAR ORONA TAMAYO (2018)

Psittacanthus calyculatus is a hemiparasitic plant that infects a wide range of trees. Mainly the biology reproduction of this mistletoe lies in bright colored flower development. Furthermore, it uses the nectar secretion as the only reward to engage different flower visitors. We investigated the physiological mechanisms of the flower phenology per hour and per day to analyze the spatial-temporal patterns of the néctar secretion, Cell Wall Invertase Activity (key enzyme in the quality of nectar), néctar chemistry, volatile organic compounds (VOCs) emission, synthesis of carotenoids and frequency of floral visitors. Flowers lasted 4 days, total nectar was loaded just before the anthesis and the secretion was maintained over day 1 and 2, decreased on day 3, and stopped on day 4. The diurnal nectar secretion dynamic per hour on day 1 and 2 showed similar patterns with high production on the morning and a decrease in the afternoon, the secretion declined on day 3 and ceased on day 4. On the other hand, CWIN activity per day was less before the anthesis and increased on day 1 and 2, this enzymatic activity decreased on the old flower phenology. Moreover, diurnal CWIN activities showed different patterns in the morning, noon, and lastly in the afternoon.

Nectar chemistry varied significantly throughout of the flower lifetime, sucrose decreased along the flower phenology increasing glucose and fructose. Amino acids showed the prevalence of proline and oxo-proline, both increased on the day 1 and diminished in subsequent old flower stages. The spatial VOCs emission showed the presence of 11 compounds being b-ocimene the main volatile; its release increased on day 1 and remained constant in the flower lifetime. Lutein, lycopene, and b-carotene were concentrated in old stages of the flowers. In field, the most frequent flower visitors were the hummingbirds that usually foraging in all phenologic flower stage and their foraging events decreased with the phenological flower lifetimes. The results showed that these traits presented by P. calyculatus flowers are able to engage and manipulate the behavior of flower visitors and contribute to the reproduction of the parasitic plant.

Article

Bioquímica Parasitología BIOLOGÍA Y QUÍMICA QUÍMICA BIOQUÍMICA QUÍMICA INDUSTRIAL QUÍMICA INDUSTRIAL