Búsqueda avanzada


Área de conocimiento




18 resultados, página 1 de 2

Enhancing maize yield in a conservation agriculture-based maize (Zea mays)- wheat (Triticum aestivum) system through efficient nitrogen management

C.M. Parihar Hari Sankar Nayak Dipaka Ranjan Sena Shankar Lal Jat Mahesh Gathala Upendra Singh (2023, [Artículo])

This study evaluated the impact of contrasting tillage and nitrogen management options on the growth, yield attributes, and yield of maize (Zea mays L.) in a conservation agriculture (CA)-based maize-wheat (Triticum aestivum L.) system. The field experiment was conducted during the rainy (kharif) seasons of 2020 and 2021 at the research farm of ICAR-Indian Agricultural Research Institute (IARI), New Delhi. The experiment was conducted in a split plot design with three tillage practices [conventional tillage with residue (CT), zero tillage with residue (ZT) and permanent beds with residue (PB)] as main plot treatments and in sub-plots five nitrogen management options [Control (without N fertilization), recommended dose of N @150 kg N/ha, Green Seeker-GS based application of split applied N, N applied as basal through urea super granules-USG + GS based application and 100% basal application of slow release fertilizer (SRF) @150 kg N/ha] with three replications. Results showed that both tillage and nitrogen management options had a significant impact on maize growth, yield attributes, and yield in both seasons. However, time to anthesis and physiological maturity were not significantly affected. Yield attributes were highest in the permanent beds and zero tillage plots, with similar numbers of grains per cob (486.1 and 468.6). The highest leaf area index (LAI) at 60 DAP was observed in PB (5.79), followed by ZT(5.68) and the lowest was recorded in CT (5.25) plots. The highest grain yield (2-year mean basis) was recorded with permanent beds plots (5516 kg/ha), while the lowest

was observed with conventional tillage (4931 kg/ha). Therefore, the study highlights the importance of CA practices for improving maize growth and yield, and suggests that farmers can achieve better results through the adoption of CA-based permanent beds and use of USG as nitrogen management option.

Green Seeker Urea Super Granules CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA MAIZE UREA YIELDS ZERO TILLAGE NITROGEN

Pathways from information to the adoption of conservation agriculture practices in Malawi and Tanzania

Paswel Marenya Dil Bahadur Rahut (2023, [Artículo])

To reduce agriculture's carbon, land and water footprint, the diffusion of conservation farming methods is one commonly cited proposition. Yet the process of translating available information on new conservation farming methods into farmers' practices is often a black box in many studies. This understanding is critical to inform strategies for scaling these complex, knowledge-intensive, but necessary practices for improving agriculture's resource and climate balance sheet. By implementing a series of mediation analysis using data from 700 households in Malawi and 930 households in Tanzania, this study examines how an improved understanding of conservation agriculture (CA) principles is an important mediator in the pathway from extension contact to the adoption of two of the CA practices examined. For the adoption of conservation tillage, the share of the mediated treatment effect was in the 31.5–34.4% range, while it was 31.6–46.9% for the adoption of soil cover (mulching). Our results suggest that unless learning from external sources strongly correlates with improved farmers' technical understanding of new farming practices, private learning by doing must be a critical adjunct to other avenues of learning. Beyond the basic promotional goals, improving farmers' technical know-how needs to be the centerpiece of holistic efforts in support of conservation farming and similar knowledge-intensive practices necessary for agriculture's sustinability goals.

CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CONSERVATION AGRICULTURE SMALLHOLDERS AGRICULTURAL PRACTICES FIELD EXPERIMENTATION

Weed management and tillage effect on rainfed maize production in three agro-ecologies in Mexico

Simon Fonteyne Abel Jaime Leal González Rausel Ovando Ravi Gopal Singh Nele Verhulst (2022, [Artículo])

Maize (Zea mays L.) is grown in a wide range of agro-ecological environments and production systems across Mexico. Weeds are a major constraint on maize grain yield, but knowledge regarding the best weed management methods is lacking. In many production systems, reducing tillage could lessen land degradation and production costs, but changes in tillage might require changes in weed management. This study evaluated weed dynamics and rainfed maize yield under five weed management treatments (pre-emergence herbicide, post-emergence herbicide, pre-emergence + post-emergence herbicide, manual weed control, and no control) and three tillage methods (conventional, minimum and zero tillage) in three agro-ecologically distinct regions of the state of Oaxaca, Mexico, in 2016 and 2017. In the temperate Mixteca region, weeds reduced maize grain yields by as much as 92% and the long-growing season required post-emergence weed control, which gave significantly higher yields. In the hot, humid Papaloapan region, weeds reduced maize yields up to 63% and pre-emergence weed control resulted in significantly higher yields than treatments with post-emergence control only. In the semi-arid Valles Centrales region, weeds reduced maize yields by as much as 65%, but weed management was not always effective in increasing maize yield or net profitability. The most effective weed management treatments tended to be similar for the three tillage systems at each site, although weed pressure and the potential yield reduction by weeds tended to be higher under zero tillage than minimum or conventional tillage. No single best option for weed management was found across sites or tillage systems. More research, in which non-chemical methods should not be overlooked, is thus needed to determine the most effective weed management methods for the diverse maize production systems across Mexico.

Corn Integrated Weed Management Manual Weed Control CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA MAIZE WEED CONTROL MINIMUM TILLAGE ZERO TILLAGE