Advanced search


Knowledge area




24 results, page 3 of 3

Screening of xylose utilizing and high lipid producing yeast strains as a potential candidate for industrial application

Linnea Qvirist RICARDO VAZQUEZ JUAREZ Thomas Andlid (2022)

"Background: Sustainable production of oil for food, feed, fuels and other lipid-based chemicals is essential to meet the demand of the increasing human population. Consequently, novel and sustainable resources such as lignocel- lulosic hydrolysates and processes involving these must be explored. In this paper we screened for naturally-occurring xylose utilizing oleaginous yeasts as cell factories for lipid production, since pentose sugar catabolism plays a major role in efcient utilization of lignocellulosic feedstocks. Glycerol utilization, which is also benefcial in yeast-based oil production as glycerol is a common by-product of biodiesel production, was investigated as well. Natural yeast isolates were studied for lipid accumulation on a variety of substrates, and the highest lipid accumulating strains were further investigated in shake fask cultivations and fermenter studies on xylose and hydrolysate. Results: By collecting leaves from exotic plants in greenhouses and selective cultivation on xylose, a high frequency of oleaginous yeasts was obtained (>40%). Diferent cultivation conditions lead to diferences in fatty acid contents and compositions, resulting in a set of strains that can be used to select candidate production strains for diferent purposes. In this study, the most prominent strains were identifed as Pseudozyma hubeiensis BOT-O and Rhodosporidium toruloides BOT-A2. The fatty acid levels per cell dry weight after cultivation in a nitrogen limited medium with either glucose, xylose or glycerol as carbon source, respectively, were 46.8, 43.2 and 38.9% for P. hubeiensis BOT-O, and 40.4, 27.3 and 42.1% for BOT-A2. Furthermore, BOT-A2 accumulated 45.1% fatty acids per cell dry weight in a natural plant hydrolysate, and P. hubeiensis BOT-O showed simultaneous glucose and xylose consumption with similar growth rates on both carbon sources. The fatty acid analysis demonstrated both long chain and poly-unsaturated fatty acids, depending on strain and medium. Conclusions: We found various natural yeast isolates with high lipid production capabilities and the ability to grow not only on glucose, but also xylose, glycerol and natural plant hydrolysate. R. toruloides BOT-A2 and P. hubeiensis BOT-O specifcally showed great potential as production strains with high levels of storage lipids and comparable growth to that on glucose on various other substrates, especially compared to currently used lipid production strains..."

Article

Microbial lipids, Oleaginous yeast, Lignocellulose, Pseudozyma hubeiensis, Rhodosporidium toruloides BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA MICROBIOLOGÍA MICROBIOLOGÍA MICROBIOLOGÍA

Do marine reserves increase prey for California sea lions and Pacific harbor seals?

ALEJANDRO ARIAS DEL RAZO (2019)

Community marine reserves are geographical areas closed to fishing activities, implemented and enforced by the same fishermen that fish around them. Their main objective is to recover commercial stocks of fish and invertebrates. While marine reserves have proven successful in many parts of the world, their success near important marine predator colonies, such as the California sea lion (Zalophus californianus) and the Pacific harbor seal (Phoca vitulina richardii), is yet to be analyzed. In response to the concerns expressed by local fishermen about the impact of the presence of pinnipeds on their communities’ marine reserves, we conducted underwater surveys around four islands in the Pacific west of the Baja California Peninsula: two without reserves (Todos Santos and San Roque); one with a recently established reserve (San Jeronimo); and, a fourth with reserves established eight years ago (Natividad). All these islands are subject to similar rates of exploitation by fishing cooperatives with exclusive rights. We estimated fish biomass and biodiversity in the seas around the islands, applying filters for potential California sea lion and harbor seal prey using known species from the literature. Generalized linear mixed models revealed that the age of the reserve has a significant positive effect on fish biomass, while the site (inside or outside of the reserve) did not, with a similar result found for the biomass of the prey of the California sea lion. Fish biodiversity was also higher around Natividad Island, while invertebrate biodiversity was higher around San Roque. These findings indicate that marine reserves increase overall fish diversity and biomass, despite the presence of top predators, even increasing the numbers of their potential prey. Community marine reserves may help to improve the resilience of marine mammals to climate-driven phenomena and maintain a healthy marine ecosystem for the benefit of both pinnipeds and fishermen. © 2019 Arias-Del-Razo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Article

Article, biodiversity, biomass, climate change, ecosystem resilience, environmental exploitation, fish stock, fishing, marine environment, marine invertebrate, nonhuman, Phoca vitulina, Pinnipedia, prey searching, Zalophus californianus, animal, biom BIOLOGÍA Y QUÍMICA CIENCIAS DE LA VIDA BIOLOGÍA ANIMAL (ZOOLOGÍA) BIOLOGÍA ANIMAL (ZOOLOGÍA)

Assessing the Spatiotemporal Relationship between Coastal Habitats and Fish Assemblages at Two Neotropical Estuaries of the Mexican Pacific

VICTOR MANUEL MURO TORRES FELIPE AMEZCUA MARTINEZ Gerogina Ramírez Ortiz FRANCISCO JAVIER FLORES DE SANTIAGO Felipe Amezcua Linares Yareli Hernández Álvarez (2022)

"Differences in fish assemblages’ structures and their relations with environmental variables (due to the variations in sampled seasons, habitats, and zones) were analyzed in two adjacent estuaries on the north Pacific coast of Mexico. Environmental variables and fish catches were registered monthly between August 2018 and October 2020. Multivariate analyses were conducted to define habitats and zones based on their environmental characteristics, and the effect of this variability on fish assemblages’ composition, biomass, and diversity (α and β) was evaluated. A total of 12,008 fish individuals of 143 species were collected using different fishing nets. Multivariate analyses indicated that fish assemblages’ structures were different between zones due to the presence, height, and coverage of distinct mangrove species. Additionally, depth and salinity showed effects on fish assemblages’ diversity (α and β-nestedness), which presented higher values in the ocean and remained similar in the rest of the analyzed zones and habitats. These results and the differences in species replacement (β-turnover) indicate the singularity of fish assemblages at estuaries (even in areas close to the ocean) and the necessity to establish local management strategies for these ecosystems."

Article

mangrove forests, marine protected areas, alpha diversity, beta diversity, multivariate analyses CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA CIENCIAS AGRARIAS PECES Y FAUNA SILVESTRE DINÁMICA DE LAS POBLACIONES DINÁMICA DE LAS POBLACIONES

Rapid effects of marine reserves via larval dispersal

Richard Cudney Bueno (2009)

Marine reserves have been advocated worldwide as conservation and fishery management tools. It is argued that they can protect ecosystems and also benefit fisheries via density-dependent spillover of adults and enhanced larval dispersal into fishing areas. However, while evidence has shown that marine reserves can meet conservation targets, their effects on fisheries are less understood. In particular, the basic question of if and over what temporal and spatial scales reserves can benefit fished populations via larval dispersal remains unanswered. We tested predictions of a larval transport model for a marine reserve network in the Gulf of California, Mexico, via field oceanography and repeated density counts of recently settled juvenile commercial mollusks before and after reserve establishment. We show that local retention of larvae within a reserve network can take place with enhanced, but spatially-explicit, recruitment to local fisheries. Enhancement occurred rapidly (2 yrs), with up to a three-fold increase in density of juveniles found in fished areas at the downstream edge of the reserve network, but other fishing areas within the network were unaffected. These findings were consistent with our model predictions. Our findings underscore the potential benefits of protecting larval sources and show that enhancement in recruitment can be manifested rapidly. However, benefits can be markedly variable within a local seascape. Hence, effects of marine reserve networks, positive or negative, may be overlooked when only focusing on overall responses and not considering finer spatially-explicit responses within a reserve network and its adjacent fishing grounds. Our results therefore call for future research on marine reserves that addresses this variability in order to help frame appropriate scenarios for the spatial management scales of interest. © 2009 Cudney-Bueno et al.

Article

article, environmental monitoring, fishery, larva, marine environment, marine species, Mexico, mollusc, nonhuman, oceanography, prediction, animal, biology, environmental protection, food industry, geography, growth, development and aging, larva, met CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA CIENCIAS DE LA TIERRA Y DEL ESPACIO OCEANOGRAFÍA OCEANOGRAFÍA