Author: Aigul Abugaliyeva

Genotype x environment interaction, breeding strategies and genetic gains for yield and grain protein content in the Kazakhstan-Siberia network on spring wheat improvement

Alexey Morgounov Aigul Abugaliyeva (2006)

Казахстан традиционно разделен на два сельскохозяйственных региона -(1)северный с условиями, пригодными для возделывания яровой пшеницы, и (2) - южный регион, пригодный для возделывания озимой пшеницы. На севере (на широте между 48 и 55 параллелями) яровая пшеница возделывается на степных землях в засушливых регионах. Количество выпадающих осадков составляет в среднем не более 300 мм в год, а средняя зимняя температура около - 20° мороза. В южном регионе (на широте между 42 и 48 параллелями) озимая пшеница выращивается в условиях орошения и на богаре при более высоком, чем на севере, уровне выпадающих осадков (Longmire апб Moldashev, 1999). На севере вследствие сравнительно сухого климата и природного плодородия земель, занимаемых яровой пшеницей, зерно имеет высокое содержание белка - от 15 до 18%. По своему качеству в Сравнении с другими регионами Азии и Европы зерно этого региона характеризуется также высоким содержанием клейковины (Shegevaev, 1997, со ссылкой на Longmire апд Moldashev, 1999). Таким образом, яровая пшеница Казахстана потенциально способна занять место между краснозерной яровой североамериканской пшеницей и австралийской пшеницей высшего качества (Longmire апд Moldashev, 1999).

Article

Яровая Пшеница Генотип Среда Содержание Белка Продуктивность Генетическое Улучшение Адаптивмость AGRICULTURAL SCIENCES AND BIOTECHNOLOGY SPRING WHEAT GENOTYPE ENVIRONMENT PROTEIN CONTENT PRODUCTIVITY GENETIC IMPROVEMENT ADAPTABILITY CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA

Effect of climate change on spring wheat yields in North America and Eurasia in 1981-2015 and implications for breeding

Alexey Morgounov Kai Sonder Aigul Abugaliyeva Vijai Bhadauria Richard Cuthbert Vladimir Shamanin (2018)

Wheat yield dynamic in Canada, USA, Russia and Kazakhstan from 1981 till 2015 was related to air temperature and precipitation during wheat season to evaluate the effects of climate change. The study used yield data from the provinces, states and regions and average yield from 19 spring wheat breeding/research sites. Both at production and research sites grain yield in Eurasia was two times lower compared to North America. The yearly variations in grain yield in North America and Eurasia did not correlate suggesting that higher yield in one region was normally associated with lower yield in another region. Minimum and maximum air temperature during the wheat growing season (April-August) had tendency to increase. While precipitation in April-August increased in North American sites from 289 mm in 1981–1990 to 338 mm in 2006–2015 it remained constant and low at Eurasian sites (230 and 238 mm, respectively). High temperature in June and July negatively affected grain yield in most of the sites at both continents. Climatic changes resulted in substantial changes in the dates of planting and harvesting normally leading to extension of growing season. Longer planting-harvesting period was positively associated with the grain yield for most of the locations. The climatic changes since 1981 and spring wheat responses suggest several implications for breeding. Gradual warming extends the wheat growing season and new varieties need to match this to utilize their potential. Higher rainfall during the wheat season, especially in North America, will require varieties with higher yield potential responding to moisture availability. June is a critical month for spring wheat in both regions due to the significant negative correlation of grain yield with maximum temperature and positive correlation with precipitation. Breeding for adaptation to higher temperatures during this period is an important strategy to increase yield.

Article

Climate change Spring wheat Grain Yield Continents Comparison WHEAT CLIMATE CHANGE ADAPTATION CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA